

HEAT METER LABORATORY OF ENERGETIKA LJUBLJANA D.O.O.

Technical characteristics and calibration capabilities of testing facilities

Test rig is owned by:

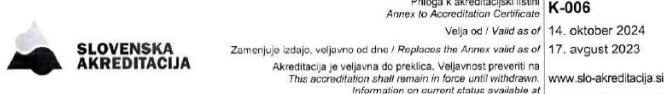
Energetika Ljubljana d.o.o., Verovškova 62, 1000 Ljubljana, Slovenija;

Contact: Igor Poljak, +386 1 5889-570; +386 1 5889-575;

igor.poljak@energetika.si;

Accessibility:

- for any customers.


Meters for which application:

- cold water meters (potable water): **yes**
- hot water meters: **yes**
- heat meters: **yes**

Main purpose of testing facility:

- for verifications (initial / subsequent): **yes**

ACCREDITATION: SIST EN ISO/IEC 17020

3.2 Podrobni opis obsega akreditacije / Detailed scope of accreditation

3.2.1 Sektor za distribucijo toplote, Laboratorij za toplotne števce, Verovškova ulica 62, 1000 Ljubljana

Tabela / Table 1

Tip obsega: fiksni / Type of scope: fixed				
Št. No	Predmet kontrole (proizvod, storitev, proces) / Item of inspection (product, service, process)	Vrsta kontrole / Inspection type	Metode in postopki (normativni dokumenti, interni postopki) / Methods and procedures (normative documents, internal procedures)	Opombe / Notes
1.	Merilniki toplotne energije	- redna kontrola - izredna kontrola - kontrola v uporabi	Pravilnik o merilnih instrumentih (Ur. list RS, št. 19/16 in 98/23), Priloga 6 – Merilniki toplotne energije (MI-004)	Temperatura vode: $T < 75^{\circ}\text{C}$ Rakovska enota s parom temp. zaznaval: - temperaturna razlika: $(3 - 160)^{\circ}\text{C}$ - temperatura: $(0 - 180)^{\circ}\text{C}$ Volumen: $(3 - 3000) \text{ l}$ Upornost: $(100 - 2000) \Omega$ Pretok: $6 \text{ l/h} < Q \leq 160 \text{ m}^3/\text{h}$
2.	Vodomer: - za hladno vodo - za toplo vodo, ki jih je skladno s certifikatom o odobritvi tipa mogočno kontrolirati s hladno vodo - za toplo vodo	- redna kontrola - izredna kontrola - kontrola v uporabi	Pravilnika o merilnih instrumentih (Ur. list RS, št. 19/16 in 98/23), Priloga 3 – Vodomer (MI-001)	Volumen: $(3 - 3000) \text{ l}$ Pretok: $6 \text{ l/h} < Q \leq 160 \text{ m}^3/\text{h}$ Temperatura vode: $T < 75^{\circ}\text{C}$

Datum / Date: 14.10.2024

SLOVENSKA
AKREDITACIJA

Direktor / Director

dr. Boštjan Godec

In laboratory are 4 **testing devices**:

- **Volukal** in fig. 1. for testing and calibration of flow sensors of heat meters and cold and hot water meters.

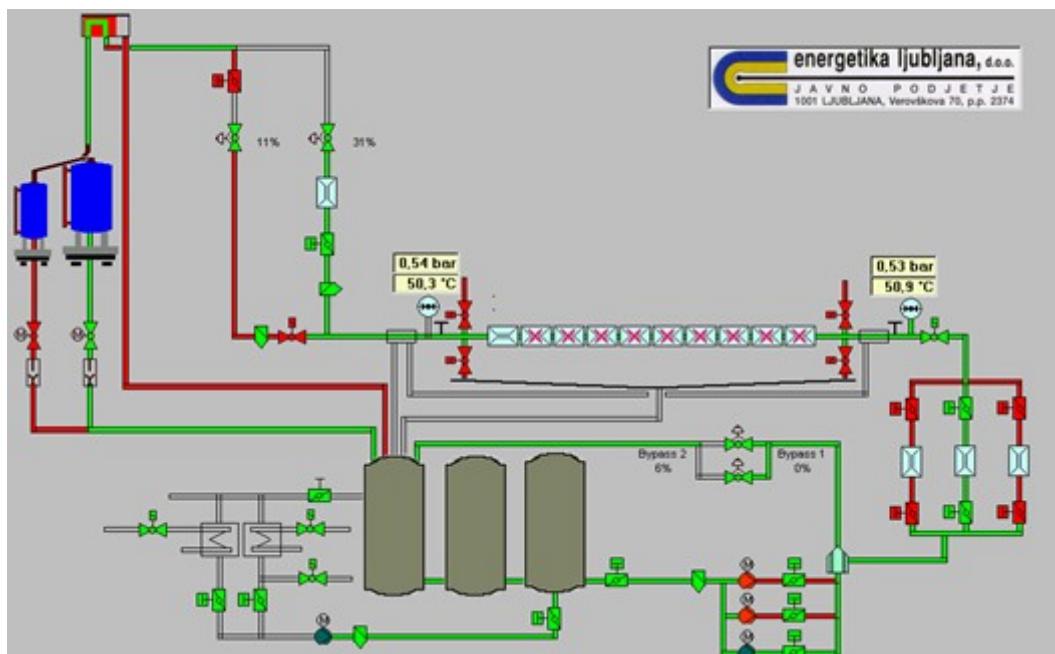


Fig. 1: Basic circuit diagram of the test facility for flow sensors and water meters

□ Characteristics of testing facilities and calibration capabilities

- Flow range / nominal pipe size: **6 l/h160 000 l/h ; DN 150**
- Pressure range / pressure settable yes/no: **≤ 5 bar / settable yes**
- Temperature range / temperature settable yes/no: **20°C ≤ t < 75°C / settable yes**
- Liquid: **water mix from district heating net (demineralised water) and drinking water in water tanks, conductivitiy nearly 150 µS/cm at 50°C.**

- Measured quantities
 - Volume flow: - yes
 - Volume: yes
 - Mass: yes
- Mode of measurement
 - flying start/stop: yes
 - standing start/stop: yes
- standards
 - gravimetric: balances
 - volumetric: master meters (electromagnetic meters-MID)
- In the case of conversion mass→volume resp. volume→mass: density calculation/density standard
- mode of operation:
 - supply tanks (upper level/ground level/ basement) and their capacities: basement (7 m³)
 - pumps and their power: centrifugal pumps
- Types of flow sensors under test: any
- Restriction to special interfaces between flow sensors under test and testing facility yes/no/which ones (e.g. only pulse output): interfaces for the most common flow sensors present, NOWA.
- measurement uncertainty of testing facilities/procedures in use – BMC ($P = 95\%$):

$6 \text{ l/h} \leq q \leq 20 \text{ l/h} ; (3 - 20 \text{ l})$	$\leq 0,3 \%$
$20 \text{ l/h} < q \leq 100 \text{ l/h} ; (20 - 60 \text{ l})$	$\leq 0,3 \%$
$100 \text{ l/h} \leq q \leq 160 \text{ m}^3/\text{h} ; (60 - 3000 \text{ l})$	$\leq 0,2 \%$

The testing rig is shown in Fig 1. and consists of three storage tanks with a total volume of ca. 7 m³ for the warm water mode up to 75 °C.

For the calibration of cold water meters is possibility to cooling the water with cooling aggregate or with network water through the heat exchanger.

Primary measuring for the test volume are weighing instruments working according to the principle of electromagnetic force compensation. They determine the

reference volume and does the measurement deviation with regard to density and buoyancy.

The weighing instruments as well as the temperature sensors installed in the test facility are calibrated regular time intervals.

The calibration procedure for water meters can be carried out by different methods.

In the "Flying mode" the flow will be built up to the value by which the water meters will be tested later. The water is deflected back to the storage tank immediately. Having reached stationary conditions which are characterised by constant flow and constant temperature conditions the water is deflected to the preselected weighing instrument in a certain period of time. After reaching the chosen testing volume the water is deflected again past the weighing instruments into the storage tanks.

In the "Start-stop mode" the flow is rising fast from zero to the reference value and the water is deflected on one of the two weighing instruments. After reaching the reference value the flow is also reduced quickly to zero.

Well as in "Flying mode" as in "Start-stop mode" weighing instruments are generally used as measuring standards. But it is also possible to use master meters as measuring standards in all modes. As a rule, the testing is done in "Flying mode" by means of a weighing instrument. The measuring procedure is controlled by the meter(s) to be tested themselves by triggering a start pulse for the comparison measurement with the master meter. The pulse rate of the master meter is very high usually leading to a high resolution of the comparison measurement.

At each testing point, the measuring deviation of the master meter is determined by the weighing instrument. On the whole the determination of the measuring deviation of the meter to be tested depends on the calibration of the weighing instrument used, the accuracy of the determination of density and buoyancy as well.

- **Termokal** in fig. 2. for testing and calibration of platinum temperature sensors of heat meters.

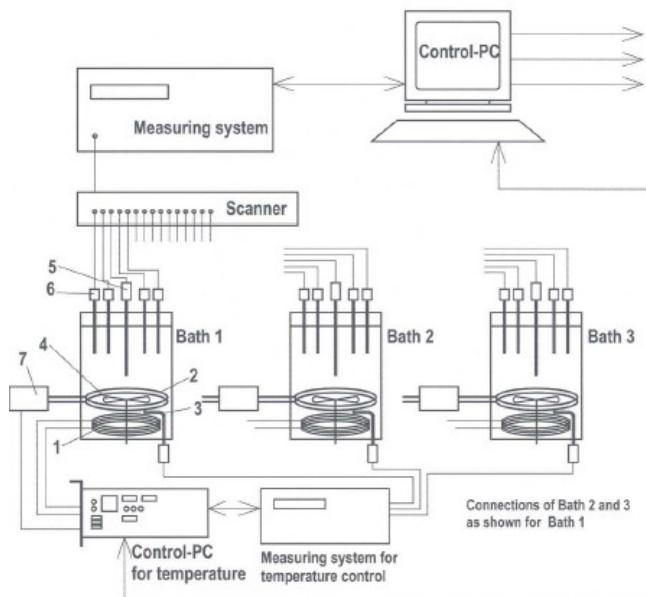


Fig. 2: TERMOKAL - Test plant for temperature-sensors

Specifications:

- Temperature range: 10°C to 180°C
- Temperature-uniformity in the calibration zone: better than $\pm 5\text{mK}$ over 15 min.
- BMC (k=2): better than 0,05°C

The test plant Termokal is a calibration plant for platinum resistance thermometers. Up to 36 thermo-meters of all common nominal values from 25 to 1000 Ohm can be calibrated simultaneously in the temperature range between 10 °C to 180 °C. The selection of sensors to best fitted pairs also is supported.

The Termokal-plant consists of:

- 3 + 1 precision calibration baths
- a measuring system
- software for control of the plant

Calibration bath:

The calibration baths are of cylindrical design, made of stain-less steel. A mixing wheel, arranged at the bottom of the bath, ensures a constant flow and a uniform temperature distribution. The temperature of the bath is controlled by integrated cooling (not in use)- and heating-coils.

Measuring system

The resistance of the sensors to be tested is measured by comparing the voltage drop at the specimen and at a high precision reference resistance with injected current. Disturbances are eliminated resp. compensated by opti-mum choice of materials and measuring technology.

The measuring system consists of high resolution digital voltmeter, scanner, current source and reference sensors for the temperature of the bath.

- **Kompukal** in fig. 3. for testing and calibration of calculators of heat meters.

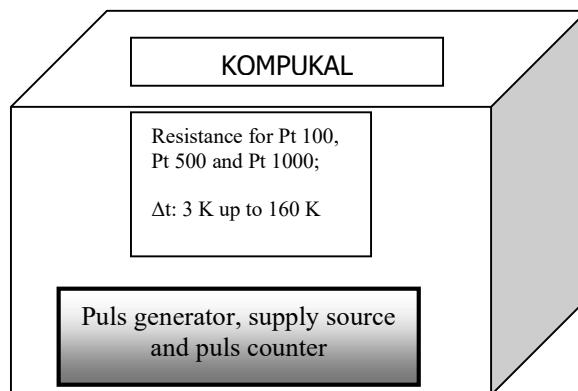


Fig 3: Kompukal: testing device for heat meter calculators.

Testing device Kompukal is simulator for temperature difference and volume pulses for calibration and control of heat meters calculators.

Specification:

- Resistances for simulation for temperature differences for Pt 100, Pt 500, and Pt 1000;
- Δt : 3 K 160 K
- BMC (k=2): $\pm 0,05$ (for Δt 50 to 160K) up to 0,42(Δt 3K).

We have special test equipment for compact heat meters and cooling meters for DN 15 to DN 32 mm – **ENERKAL**.

Energy measurement: Heat/Cold;

- FLOWSENSOR+CALCULATOR+T-SENSOR
- CALCULATOR +T-SENSOR

Volume measurement:

- FLOWSENSOR
- Cold water meter
- Hot water meter

Energetika Ljubljana is one of the members of [**EMATEM**](#) - European Metrology Association for Thermal Energy Measurement.